7 research outputs found

    Variational learning of quantum ground states on spiking neuromorphic hardware.

    Get PDF
    Recent research has demonstrated the usefulness of neural networks as variational ansatz functions for quantum many-body states. However, high-dimensional sampling spaces and transient autocorrelations confront these approaches with a challenging computational bottleneck. Compared to conventional neural networks, physical model devices offer a fast, efficient and inherently parallel substrate capable of related forms of Markov chain Monte Carlo sampling. Here, we demonstrate the ability of a neuromorphic chip to represent the ground states of quantum spin models by variational energy minimization. We develop a training algorithm and apply it to the transverse field Ising model, showing good performance at moderate system sizes ( ). A systematic hyperparameter study shows that performance depends on sample quality, which is limited by temporal parameter variations on the analog neuromorphic chip. Our work thus provides an important step towards harnessing the capabilities of neuromorphic hardware for tackling the curse of dimensionality in quantum many-body problems

    Bacterial colonization dynamics and antibiotic resistance gene dissemination in the hospital environment after first patient occupancy: a longitudinal metagenetic study

    Get PDF
    Background!#!Humans spend the bulk of their time in indoor environments. This space is shared with an indoor ecosystem of microorganisms, which are in continuous exchange with the human inhabitants. In the particular case of hospitals, the environmental microorganisms may influence patient recovery and outcome. An understanding of the bacterial community structure in the hospital environment is pivotal for the prevention of hospital-acquired infections and the dissemination of antibiotic resistance genes. In this study, we performed a longitudinal metagenetic approach in a newly opened ward at the Charité Hospital (Berlin) to characterize the dynamics of the bacterial colonization process in the hospital environment after first patient occupancy.!##!Results!#!The sequencing data showed a site-specific taxonomic succession, which led to stable community structures after only a few weeks. This data was further supported by network analysis and beta-diversity metrics. Furthermore, the fast colonization process was characterized by a significant increase of the bacterial biomass and its alpha-diversity. The compositional dynamics could be linked to the exchange with the patient microbiota. Over a time course of 30 weeks, we did not detect a rise of pathogenic bacteria in the hospital environment, but a significant increase of antibiotic resistance determinants on the hospital floor.!##!Conclusions!#!The results presented in this study provide new insights into different aspects of the environmental microbiome in the clinical setting, and will help to adopt infection control strategies in hospitals and health care-related buildings. Video Abstract
    corecore